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Abstract
The HMW effect in noncommutative quantum mechanics is studied. By solving
the Dirac equations on noncommutative (NC) space and noncommutative
phase space, we obtain topological HMW phase on NC space and NC phase
space, respectively, where the additional terms related to the space–space and
momentum–momentum noncommutativity are given explicitly.

PACS numbers: 11.10.Nx, 03.65.−w, 02.40.Gh

1. Introduction

The study of physics effects on noncommutative space has attracted much attention in recent
years, because the effects of the space noncommutativity may become significant not only
in the string scale but also at the very high energy level (Tev and higher energy level).
Besides the field theory, there are many papers devoted to the study of various aspects of
quantum mechanics on NC space with usual (commutative) time coordinate. For example, the
topological AB and AC effects on NC space and even on NC phase space have been studied
[1–6]. In this paper, we will deal with another very interesting topological effect, HMW
effect, on NC space and NC phase space, respectively. The HMW effect was first discussed
in 1993 by He and Meckellar [7] and a year later independently by Wilkens [8]. The HMW
effect corresponds to a topological phase related to a neutral spin-1/2 particle with non-zero
electric dipole moving in the magnetic field, and in 1998, Dowling, Willianms and Franson
point out that the HMW effect can be partially tested using metastable hydrogen atoms [9].
Just as the AB, AC effects, the HMW effect has the same importance in the literature, and the
study of the correction of the space (and momenta) noncommutativity to the HMW effect will
be meaningful.
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To begin with, let us first give a brief review of some properties of noncommutative space
and noncommutative phase space. In NC space, the coordinate and momentum operators
satisfy the following commutation relations (we set h̄ = c = 1 in this paper):

[x̂i , x̂j ] = iθij , [p̂i , p̂j ] = 0, [x̂i , p̂j ] = iδij , (1)

where x̂i and p̂i are the coordinate and momentum operators on a NC space. When a spin-1/2
particle moves in a electromagnetic field, the Dirac equation for the particle, usually, can
be written as [iγµ∂µ + Sµγ µ − m]ψ = 0, here Sµ is a Lorentz vector which depends not
only on the electromagnetic field in which the particle moves but also on the electromagnetic
properties of the particle itself. On the NC space, this Dirac equation becomes

[iγµ∂µ + Sµγ µ − m] � ψ = 0, (2)

i.e., just replace normal product to a star product, then the Dirac equation in commuting space
will change into the Dirac equation in NC space. The Moyal–Weyl (or star) product between
two functions is defined by

(f ∗ g)(x) = e
i
2 θij ∂xi

∂xj f (xi)g(xj ) = f (x)g(x) +
i

2
θij ∂if ∂jg

∣∣∣∣
xi=xj

+ O(θ2), (3)

where f (x) and g(x) are two arbitrary functions. Other than to solve the NC Dirac equation
by using the star product, an equivalent method will be used in this paper, that is, we replace
the star product in the Dirac equation with the usual product by shift, the NC coordinates
defined in [2], i.e.,

x̂i = xi − 1
2θijpj , p̂i = pi, (4)

as well as a shift for the vector Sµ,

Sµ → Ŝµ = Sµ + 1
2θαβpα∂βSµ. (5)

Then, the Dirac equation can be solved in the commuting space and the noncommutative
properties can be realized through the terms related to θ .

The Bose–Einstein statistics in noncommutative quantum mechanics requires both space–
space and momentum–momentum noncommutativity, the space in this case is called NC phase
space. On NC phase space, the commutation relations (1) should be replaced with

[x̂i , x̂j ] = iθij , [p̂i , p̂j ] = iθ̄ ij , [x̂i , p̂j ] = iδij . (6)

and the star product in equation (2), on NC phase space, defines

(f ∗ g)(x, p) = exp

(
i

2α2
θij ∂

x
i ∂x

j +
i

2α2
θ̄ ij ∂

p

i ∂
p

j

)
f (x, p)g(x, p)

= f (x, p)g(x, p) +
i

2α2
θij ∂

x
i f ∂x

j g

∣∣∣∣
xi=xj

+
i

2α2
θ̄ ij ∂

p

i f ∂
p

j g

∣∣∣∣
pi=pj

+ O(θ2),

(7)

where O(θ2) stands for the second and higher order terms of θ and θ̄ . To replace the star
product in the Dirac equation on NC phase space we need a generalization of the shift in
equation (4), i.e.,

xµ → αxµ − 1

2α
θµνp

ν, pµ → αpµ +
1

2α
θ̄µνx

ν, (8)

and together with a shift

Sµ → Ŝµ = αSµ +
1

2α
θαβpα∂βSµ, (9)

which is the partner of the shift in equation (5) on NC phase space.
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2. Review of the HMW effect on (2 + 1)-dimensional commutative space time

In order to study the NC properties of the HMW effect, a brief review of the effect on (2 + 1)-
dimensional commutative space time is necessary. The Lagrange of a spin-1/2 neutral particle
with electric dipole µe moving in the electromagnetic field is given by

L = ψ̄ iγ µ∂µψ − mψ̄ψ − i 1
2µeψ̄σµνγ5ψFµν. (10)

The last term in the Lagrangian represents the HMW effect. Using the identity σµνγ5 =
(i/2)εµναβσαβ , the Lagrangian becomes

L = ψ̄ iγ µ∂µψ − mψ̄ψ + 1
2µeF̃ µνψ̄σµνψ, (11)

where F̃ is the Hodge star of F, i.e. F̃ µν = 1
2εµναβF αβ . Similar as AB, AC and other

topological effects, the HMW effect is also usually studied in (2 + 1) dimension, because the
particle moves in a plane.

We restrict the particle moves on a plane (say (x − y)-plane), then the problem can be
treated in (2 + 1) space time. We use the conventions gµν = diag(1,−1,−1) and the anti-
symmetric tensor εµνα with ε012 = +1. We will use three 4 × 4 Dirac matrices which can
describe spin up and down in the notional z-direction for a particle and its anti-particle [10].
In (2 + 1) dimensions, these Dirac matrices satisfy the following relation:

γ µγ ν = gµν − iγ 0σ 12εµνλγλ. (12)

A particular representation is

γ 0 = I ⊗ σ3, γ 1 = i diag(1,−1) ⊗ σ2, γ 2 = iI ⊗ σ1. (13)

We define

a = −iγ 0γ 1γ 2 = −γ 0σ 12 = diag(1,−1) ⊗ σ3, (14)

then the Lagrangian in (2 + 1) dimension can further be written as

L = ψ̄ iγ µ∂µψ − mψ̄ψ − (1/2)aµeεαβµF̃ αβψ̄γ µψ. (15)

By using Euler–Lagrange equation, the Dirac equation for a spin-half neutral particle with
a electric dipole moment µe is

(iγµ∂µ + Sµγ µ − m)ψ = 0, (16)

where

Sµ = −(1/2)aµeεαβµF̃ αβ. (17)

The solution to the Dirac equation has the form

ψ = eiφHMWψ0, (18)

where ψ0 is the solution for electromagnetic field free case. The phase in equation (18) is
called the HMW phase, and it has the form

φHMW =
∫ x

Sµ dxµ = −1

2
aµe

∫ x

εαβµF̃ αβ dxµ. (19)

The HMW phase above is the general HMW phase for a spin-1/2 neutral particle passing
through an electromagnetic field. When the neutral particle moves through a pure static
magnetic field, F̃ µν reduced to F̃ 0i , then we have

φHMW = −aµe

∫ x

ε0ij F̃
0i dxj = −aµe

∫ x

(k̂ × �B) · d�x, (20)

where k̂ is the unit vector in z-direction and we assume that the magnetic dipole moment is
always along this direction.
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3. The HMW phase in noncommutative quantum mechanics

Now we are in the position to discuss the HMW topological phase in NC quantum mechanics.
First let us consider the NC space case. In the noncommutative space, the coordinate and
momentum operators satisfy the commutation relations (1), and the Dirac equation for the
HMW effect is given by equation (2), where Sµ is given in equation (17). After the shift
defined in equation (5), the Dirac equation becomes(

iγµ∂µ − (1/2) aµeεµαβ

(
F̃ αβ + 1

2θτσpτ ∂σ F̃ αβ
)
γ µ − m

)
ψ = 0. (21)

This equation is defined in commuting space and the coordinate noncommutative effect appears
in θ related terms. It is easy to check that the solution to this Dirac equation has the form

ψ = eiφ̂HMWψ0, (22)

where ψ0 is the solution for electromagnetic field free case and φ̂HMW is the HMW phase in
NC space, which reads

φ̂HMW = −1

2
aµe

∫ x

εµαβ
ˆ̃Fαβ dxµ

= −1

2
aµe

∫ x

εµαβF̃ αβ dxµ − 1

4
aµe

∫ x

εµαβθστpσ ∂τ F̃
αβ dxµ. (23)

This is the general HMW phase for a spin-1/2 neutral particle moving in a general
electromagnetic field.

Now let us consider the situation where only static electric field exists. Just like the case
discussed in [17], the Hamiltonian of the particle in commuting space has the form

H = 1

2m
�σ · (�p + iµe

�B)�σ · (�p − iµe
�B). (24)

By using �∇ · �B = 0, equation (24) can be recast as

H = 1

2m
(�p − �µ × �B)2 − µ2B2

2m
, (25)

where �µ = µe �σ , then the velocity operator can be gotten as

vl = ∂H

∂pl

= 1

m
[pl − (�µ × �B)l]. (26)

From this equation, we know that in noncommutative space we have

pl = mvl + (�µ × �B)l + O(θ). (27)

Insert equation (27) into (23) and note that

F̃ αβ −→ F̃ 0i and θ ij = θεij , θ0µ = θµ0 = 0, (28)

we have

φ̂HMW = φHMW + δφNCS, (29)

where φHMW is the HMW phase in commuting space given by (20), the added phase δφNCS,
related to the noncommutativity of space, is given by

δφNCS = −1

2
aµe

∫ x

εµ0iθεαβ[mvα + (�µ × �B)α]∂βF̃ 0idxµ

= 1

2
aµeθεij

∫ x

[kj + (�µ × �B)j ](∂iB
2 dx1 − ∂iB

1 dx2), (30)
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where kj = mvj , and the result here coincides with the result given in [18], where the tedious
star product calculation has been used. The first term in equation (28) is a velocity-dependent
correction insensitive to the topology of the manifold and could modify the phase shift, the
second term is a noncommutative correction to the vortex which does not contribute to the line
spectrum.

When both space–space and momentum–momentum non-commutating are considered,
i.e. we study the problem on NC phase space, the Dirac equation for the HMW model is the
same as the case on NC space, but the star product and the shifts are defined in equations (7)
and (9). After a similar procedure as in NC space, we got the Dirac equation on NC phase
space as{
−γ µpµ − 1

2α2
γ µθ̄µνx

ν − (1/2)aµeεµαβ

[
F̃ αβ +

1

2α2
θτσpτ ∂σ F̃ αβ

]
γ µ − m′

}
ψ = 0,

(31)

where m′ = m/α. The solution to (31) is

ψ = eiϕ̂HMWψ0, (32)

where ψ0 is the solution of the Dirac equation for free particle with mass m′ and ϕ̂HMW stands
for the HMW phase in NC phase space, and it has the following form:

ϕ̂HMW = −1

2
aµe

∫ x

εµαβF̃ αβ dxµ − 1

2α2

∫ x

θ̄ ij xj dxi − 1

4α2
aµe

∫ x

εµαβθστpσ ∂τ F̃
αβ dxµ.

(33)

Equation (33) is the general HMW phase in noncommutative phase space. Once again for this
case only static magnetic field exists, then the HMW phase reduces to

ϕ̂HMW = φHMW + δφNCPS, (34)

where

δφNCPS = − 1

2α2

∫ x

θ̄ ij xj dxi − 1

2α2
aµe

∫ x

εµ0iθεαβ[m′vα + (�µ × �B)α]∂βF̃ 0i dxµ

= − 1

2α2

∫ x

θ̄ ij xj dxi +
1

2α2
aµeθεij

∫ x

[k′
j + (�µ × �B)j ](∂iB

2 dx1 − ∂iB
1 dx2),

(35)

in which k′
j = m′vj , pl = m′vl + (�µ × �B)l + O(θ) have been applied and we omit the

second-order terms in θ . The term δφNCPS represents the noncommutativity for both space and
momentum. The first term in δφNCPS is a contribution purely from the noncommutativity of the
momenta, similar to equation (30), the second term is a velocity-dependent correction and the
third term is a correction to the vortex of magnetic field. In two-dimensional noncommutative
plane, θ̄ ij = θ̄ εij , and the two NC parameters θ and θ̄ are related by θ̄ = 4α2(1 − α2)/θ [6].
When α = 1, which will lead to θ̄ ij = 0, δφNCPS returns to δφNCS, namely, the HMW phase
on NC phase space will return to the HMW phase in NC space.

4. Conclusion remarks

In this paper, the HMW effect is studied on both noncommutative space and noncommutative
phase space. Instead of doing tedious star product calculation, we use the ‘shift’ method, i.e.
the star product in the Dirac equation can be replaced by the shift defined in [2] and together
with the shift we defined in (5) for NC space and (9) for NC phase space. These shifts are
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exact equivalent to the star product. The additional HMW phase terms (23) and (30) in NC
space and the terms (33) and (35) in NC phase space are new results of our paper, these two
term are related to noncommutativity of space and phase space. This effect is expected to be
tested at a very high energy level, and the experimental observation of the effect remains to be
further studied.

The method we use in this paper may also be employed to other physics problem on NC
space and NC phase space. The further study on the issue will be reported in our forthcoming
papers.
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